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Probing asymmetry and self-similarity of fully developed turbulence

Samuel I. Vainshtein
Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637

~Received 2 July 1997!

An experimental study of atmospheric turbulent flow has been made to probe self-similarity and deviation
from self-similarity of turbulence. Special emphasis is made on asymmetry as an indicator of the deviation
from self-similarity. The scaling exponents for positive and negative parts of the velocity increments have been
obtained for several moment orders, up to the sixth. The exponents do show asymmetry, predicted by the
so-called ramp-model@S. I. Vainshtein and K. R. Sreenivasan, Phys. Rev. Lett.73, 3085~1994!#. This asym-
metry, however, can be estimated as moderate. Much more pronounced asymmetry is found in the tails of the
velocity increments probability distribution function~PDF’s!. In particular, the odd moments are mainly
defined by the asymmetry of the tails, rather than by that of the PDF core. The deviation from self-similarity
is also quite pronounced for the joint two-point PDF.@S1063-651X~97!11212-0#

PACS number~s!: 47.27.Ak, 47.27.Jv
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I. INTRODUCTION

The similarity hypotheses, suggested by Kolmogor
@1,2#, have been studied for a long time. The so-called K
mogorov 1941~K41! theory implies self-similar behavior
that is, scaling laws for the structure functions, these fu
tions being introduced in the above-mentioned papers.

The similarity hypotheses is a subject of intense stud
not abating until now, see, e.g., recent review@3#. The reason
is that the two similarity hypotheses@1,2# in fact correspond
to nonintermittent systems. For Gaussian statistics, of cou
there is no intermittency, and the K41 two similarity hypot
eses would be confirmed. It is interesting to note that the
distribution cannot be Gaussiana priori because of Kolmog-
orov law, also found in K41@1#. Indeed, the latter implies
that the third moment of the velocity increments does
vanish~and the first does for statistically homogeneous s
tems!, and therefore the distribution is asymmetric, and n
Gaussian.

This asymmetry is known, of course; the probability d
tribution function, PDE, can be seen to be asymmetric
least by measuring the skewness~which is known to be
negative!. The asymmetry of the PDF is not very pronounc
at the core, where the velocity increments change with
say, three standard deviations; see, e.g.,@4#. That is, say,
99.7% of events~if the PDF core can be approximated
Gaussian distribution! is not really asymmetric. This ‘‘natu
ral’’ asymmetry, due to the Kolmogorov law, was traditio
ally interpreted as a manifestation of turbulent energy c
cade to the small scales@5#.

It has been suggested recently that the asymmetry ma
also related to the deviation from self-similarity, i.e., in fa
it is related to the intermittency@6#. And indeed, both experi
mental measurements in pipe turbulence and direct num
cal simulations @7# seem to confirm the so-called ram
model, suggested in@6#, see also@4#. These measuremen
corresponded to the statistics of low moments, or, alter
tively, to the PDF core. The aim of this paper is to study
asymmetry related phenomena at higher order statistics
equivalently, at the PDF tails, where the intermittency is
rectly manifested. This may give us more straightforwa
561063-651X/97/56~6!/6787~14!/$10.00
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insight into the relationship between the asymmetry and
termittency of fully developed turbulence.

II. DESCRIPTION OF METHODS AND CONTENTS
OF THE PAPER

The main approach used in this paper is experimen
The measurements reported here present data from a
spheric turbulence, obtained at Yale University. A hot-w
anemometer was placed about 35 m above the ground. M
wind speed was 7.6 m/sec, root-mean-square velocity
m/sec. Using Taylor’s hypothesis and local isotropy assum
tion to obtain dissipation, one obtains the Taylor microsc
Reynolds number to be 9540, and the Kolmogorov mic
scaleh to be 0.57 mm. The data were sampled at 5 kHz, a
the whole data set consists of 103106 data points~courtesy
of K. R. Sreenivasan!.

This data set was divided into four files, each of the
consisting of 2.53106 data points. We will refer to them a
runsA, B, C, andD. Each run was treated separately, as
we had four separate experiments. This made it possibl
study convergence of quantities under consideration.
main results, like calculation of moments of different orde
are eventually averaged over all four files, provided the c
vergence is satisfactory. Some of the results from differ
runs are compared with each other. For example, the tail
the PDF present rare events, and it is useful to see the
ference and common features from different runs.

The paper mainly deals with statistics of the velocity i
crements for different separationsr . The separation is con
ventionally given in terms of Kolmogorov lengthh. We will
prefer, however, to use the sample lengthr 0 , corresponding
to the smallest separation between two data points in
particular experiment. There are two reasons for that. F
the distributions withr 5r 0 , corresponding to the velocity
gradient, play a special role, see, e.g.,@4#. In particular, it is
straightforward to provide the box counting for integer b
sizes, that is, in terms ofr 0 . Second, we also study in thi
paper the two-point joint velocity statistics, for which ca
the Kolmogorov scale does not have an obvious prefere
Therefore, in order to keep the units the same throughout
paper, we prefer to plot all distances in units ofr 051. This
6787 © 1997 The American Physical Society
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6788 56SAMUEL I. VAINSHTEIN
should not lead to confusion, at least because the Kolm
orov scale has the same order of magnitude asr 0 . In fact,
h50.4r 0 , so that we may expect the inertial range to app
at r .10r 0 , say.

We study self-similar PDF for the velocity increments
Sec. III, with emphasis on the requirements that the s
similarity imposes on the positive and negative velocity
crements separately, that is, on the asymmetry of statis
In Sec. IV, the self-similar joint two-point PDF is intro
duced. Section V presents experimental evidence of the
viation from the self-similarity for the velocity incremen
PDF. The section in part compiles previous results, and
addition presents new measurements from theA, B, C, and
D runs. Special attention is devoted to the asymmetry, wh
this deviation is manifested more strongly. Section VI d
scribes the measurements of the joint PDF, and its devia
both from Gaussian, and from self-similar form. Finally, t
main conclusions are given in Sec. VII.

III. SELF-SIMILAR PDF

We start with the PDF for the velocity incrementsu
5D rv5v(x1r )2v(x), wherev(x) andv(x1r ) are longi-
tudinal components of the velocities at pointsx and x1r
correspondingly. Generally, for homogeneous turbulen
the PDF, p(uux,x1r ), is a function of two arguments
p(uux,x1r )[P(u,r ). There is an obvious symmetry for th
PDF,

P~u,r !5P~2u,2r !, ~1!

or, in a more compact form,

P~u,r !5P~nu,r !, n5
r

ur u
. ~2!

The PDF can be called self-similar, if it obeys the sc
transformation formula

P~u,lr !du5P~hu,r !dhu, ~3!

where, generally, the scale function,h[h(r ,l). Naturally,
h(r ,l51)51. The functionh(r ,l) can be specified, consid
ering l in the vicinity of unity, l511d, d!1. Then,
h(r ,l)511dg(r ), whereg(r )5]lh(r ,l51).

Equation~3! is now reduced to

P~u,r !g~r !1
]P~u,r !

]u
g~r !u2

]P~u,r !

]r
r 50, ~4!

with the general solution,

P~u,r !5
1

s~r !
FS u

s~r ! D , ~5!

whereF is an arbitrary function, and

s~r !5e2*~g/r !dr.

Substituting Eq.~5! back into Eq.~3!, we get for arbitrary
l,
g-

r

f-
-
s.

e-

in

re
-
n

e,

e

h~r ,l!5
s~r !

s~lr !
. ~6!

It can be seen from Eq.~5! that the PDF can be written a
a function of one argument, namely,

pS u

s~r !
Ur D5F~X!, X5

u

s~r !
, ~7!

and that is the reason it can be called self-similar.
We defines(r ) through the second moment,

s~r !25^u2&5E u2P~u,r !du. ~8!

For the self-similar PDF,

E F~X!dX51, ~9!

~normalization!, and

E F~X!X2dX51, ~10!

which follows from definition~8!.
As s(r )2 corresponds to a structure function of the se

ond order, it behaves accordingly. That is,

s~r !252@K~0!2K~r !#, ~11!

whereK(r ) is velocity correlation function,

K~r !5^v~x1r !v~x!&.

Therefore,s(r 50)50, and

s~r→`!2→2K~0!52 max$K~r !%.0. ~12!

As the PDF may not be negative, the functions(r ) cannot
be negative either, see Eq.~5!, that is,s(r )>0, and

s~2r !5s~r !. ~13!

So far, apart from restrictions~11!–~13!, the function
s(r ) is arbitrary, and, in particular, it need not be a pow
law. We can assume, though, that the PDF is self-similar
narrow sense as well, in addition to the requirement~3!.
Namely, let

s~lr !5h~l!s~r !. ~14!

Considering againl511d, we get

s~r !5Crp, p5
dh

dl
~l51!5const, ~15!

an analog of Eq.~5!, and h(l)5lp, an analog of Eq.~6!.
However, there is no need for assumption~14!, as shown
below.

Returning to the general requirement~1!, we see that the
self-similar PDF must satisfyF(2X)5F(X) to be an even
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function. Real PDF is asymmetric, and therefore, we hav
relax the requirement~3! and write the PDF in a more gen
eral form,

P~u,r !5
1

s~r !
FS nu

s~r ! D , ~16!

Thus,F5F(nX) is a function of two arguments, and henc
strictly speaking, the PDF is not self-similar. However, ther
dependence enters only through the sign ofr , and therefore
we will still refer to the PDF in the form~16! as self-similar.

We now calculate the structure functions,S̃m(r )5^um&,
wherem is an integer, and generalized structure functio
Sq(r )5^uuuq& ~q is arbitrary!. It follows from Eq. ~16! that

S̃m~r !5 s̃~m!s~r !m, ~17!

where

s̃~m!5E F~nX!XndX

and

Sq~r !5s~q!s~r !q, ~18!

where

s~q!5E F~X!uXuqdX.

It is clear, first, that, for evenm, S̃m(r )5Sm(r ). Second,
s̃(0)5s(0)51, from Eq.~9!; s̃(1)50 ~follows from homo-
geneity, ^u&50!; and finally s̃(2)5s(2)51, by definition
~10!.

If the PDF would be symmetric, then all the structu
functions of odd orders vanish,s̃(m52l 11)50, l is integer.
However, the third moment does not vanish. As a matte
fact, according to the Kolmogorov law@1#, in inertial range,

S̃3~r !52 4
5 er , ~19!

wheree is the energy dissipation rate.
Therefore,

s̃~3!s~r !352 4
5 er ,

so that

s~r !;r 1/3.

Specifying the coefficient, we have

s~r !5C2
1/2~er !1/3. ~20!

Here the coefficientC2 is chosen in such a way that Eq.~11!
is satisfied. Thus, the power law fors(r ) follows from the
general self-similarity requirement~3! and the Kolmogorov
law: no need to assume the self-similarity in a narrow sen
as in Eqs.~14! and ~15!.

It then follows from Eqs.~17! and ~18! that

S̃m~r !5 s̃~m!~C2
3/2er !m/3;r jm, jm5

m

3
, ~21!
to

,

,

f

e,

and

Sq~r !5s~q!~C2
3/2er !q/3;r zq, zq5

q

3
. ~22!

Obviously, for the self-similar PDF,jm5zm , and, in par-
ticular,

z35j351. ~23!

Thus, the PDF in the form~16!, plus the Kolmogorov law
~19!, recover the K41 hypotheses. On the other hand,
PDF is defined if all moments are known@5#, and therefore
the form ~16! is unambiguously defined by the K41 hypot
eses@4#, see also@8#.

It follows from Eq. ~17! that skewness

Sk~r !5
S̃3~r !

S̃2~r !3/2
5 s̃~3!5const, ~24!

and flatness

F4~r !5
S4~r !

S2~r !2 5s~4!5const. ~25!

It is noteworthy that the PDF in general self-similar for
~16! cannot be valid everywhere for arbitraryr . Indeed, any
odd moment of the structure function must vanish atr→`,
or, to be more specific, it should be small atr @ l , wherel is
the integral~or correlation! length. However, according to
Eq. ~17! and Eqs.~11! and ~12!, the structure function as
ymptotically approaches a constant. That means that
most general self-similar PDF should be written in the fo

P~u,r !5
1

s~r !
FS nu

s~r !
,r D , ~26!

where the explicitr dependence inF is negligible for r
! l , and for r * l the PDF becomes symmetric~so that the
odd moments vanish!. As the inertial range is defined ash
!r ! l , whereh is the Kolmogorov scale, the PDF in th
form ~16! can be accepted for small and moderater . At r
@ l , the PDF is automatically independent ofr ~presenting
statistics of the sum of two independent variables!, and
therefore Eq.~16! can be used again: this time, with symme
ric F. Only at r' l does the presentation~16! fail, and the
PDF should be written in general form~26!.

As the goal of this paper is to study the deviation fro
self-similarity, we note that asymmetry is quite a sensit
indicator of this deviation. In order to see that, we will co
sider, following@6#, the positive and negative moments sep
rately. That is, denoteSq

1(r ) the structure functions for posi
tive increments, andSq

2(r ) for negative. In other words,

Sq
1~r !5E

0

`

uqp~uur !du, Sq
2~r !5E

2`

0

uuuqp~uur !du,

so that

Sq~r !5Sq
1~r !1Sq

2~r !, S̃m~r !5Sm
1~r !2Sm

2~r !.

For the PDF in the form~16!, if valid,
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Sq
1~r !5sq

1s~r !q, Sq
2~r !5sq

2s~r !q, ~27!

where

sq
15E

0

`

F~nX!XqdX, sq
25E

2`

0

F~nX!uXuqdX.

IV. SELF-SIMILAR JOINT TWO-POINT PDF

Consider the two-point PDF,p(v,v8ux,x8)5P(v,v8,r ),
x85x1r , the probability density for the velocity to assum
the valuesv andv8 at the pointsx andx8. Note, first, that
the PDF obviously obeys the symmetry property,

p~v,v8ur !5p~v8,vu2r !, ~28!

corresponding to Eq.~1!, and, second, the velocity incre
ments PDF used in the previous section follows from
two-point PDF,

p~uur !5E p~v82u,v8ur !dv8.

It is clear from this expression, and from Eq.~28!, that the
joint PDF cannot be expected to be self-similar in respec
variablesv andv8: if it can be written in a self-similar form,
then at least one of the variables should beu5v82v. In
order to find the second variable, we first define tw
dimensional self-similarity for~unknown! variables ṽ and
ṽ8, both presenting some combinations of the velocitiesv
andv8. Namely, the PDF is self-similar if it obeys

P~ ṽ,ṽ8,lr !dṽdṽ85P~hṽ,h8ṽ8,r !dhṽdh8ṽ8, ~29!

whereh[h(r ,l), andh8[h8(r ,l), cf. Eq.~3!. Considering
again the scale factorl in the vicinity of unity,l511d, we
obtain the following equation forP,

Pg~r !1
]P

] ṽ
g~r !ṽ1

]P

] ṽ8
g8~r !ṽ82

]P

]r
r 50, ~30!

where g(r )5] ṽh(r ,l51), and g8(r )5] ṽ 8h8(r ,l51),
with the general solution

P5
1

s̃~r !s̃8~r !
FS ṽ

s̃~r !
,

ṽ8

s̃8~r ! D , ~31!

where

s̃~r !5e2*~g/r !dr, s̃8~r !5e2*~g8/r !dr.

As a result, analogous to Eq.~6!, we have

h~r ,l!5
s̃~r !

s̃~lr !
and h8~r ,l!5

s̃8~r !

s̃8~lr !
.

It is clear now that if the joint PDF is self-similar, then
can be written as a function of two arguments~instead of
three:v, v8, andr !. Namely,

pS ṽ
s̃~r !

,
ṽ8

s̃8~r !
Ur D5F~X,Y!, X5

ṽ
s̃~r !

, Y5
ṽ8

s̃8~r !
,

~32!
e

o

-

cf. Eq. ~7!. As mentioned, one of the variables should beu.
Now, in order to keep the symmetry~28!, we suggest that the
second variable isv81v, so that two ‘‘canonical’’ variables
read

X5
u5v82v

s~r !5^u2&1/2, ~33a!

Y5
u85v81v

s8~r !5^u82&1/2, ~33b!

And indeed, as an example, the Gaussian distribution

pG~v,v8ux,x8!

5
1

2p@K~0!22K~r !2#1/2

3exp H 2
K~0!v222K~r !vv81K~0!v82

2@K~0!22K~r !2# J ,

can be written in a self-similar form,

pG~X,Y!5
1

2p
e2~X21Y2!/2. ~34!

Heres(r ) is found from Eq.~11!, as before, and

s8~r !25^u82&5^~v81v !2&52@K~0!1K~r !#. ~35!

In addition to being self-similar@the PDF~34! is indepen-
dent ofr #, the Gaussian distribution presents two statistica
independent variables,X andY. Besides, the functional de
pendence of the PDF on the variableX coincides with that
for the variableY. That is to say that there is only on
functional dependence in Eq.~34!. In general, however, as
seen from Eq.~32!, the PDF is two dimensional, and cann
be presented as a productF1(X)F2(Y), in which case the
variables would be independent.

A more general form of self-similar two-point PDF inco
porates possible asymmetry, analogous to Eq.~16!, that is,

p~v,v8ur !5
1

s~r !s8~r !
F~nX,Y!, ~36!

whereX andY are defined in Eq.~33!, or

p~X,Yur !5F~nX,Y!, ~37!

cf. Eq. ~7!.
We note finally that any joint PDF can be written in term

of dimensionless variables,X andY, and generally,

p~X,Yur !5F~X,Y,r !. ~38!

The PDF in dimensionless form~38! is useful to measure
experimentally, because it can be easily compared wit
Gaussian, and with self-similar PDF: in the latter case
PDF should be independent ofr .

Obviously,

p~Xur !5E F~X,Y,r !dY, ~39!
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and

p~Yur !5E F~X,Y,r !dX. ~40!

V. DEVIATIONS FROM SELF-SIMILARITY

Probing the K41 hypotheses, or, equivalently, the s
similarity of PDF by direct measurements, showed that th
are noticeable deviations from K41. Measurements of
scaling exponents of the structure functions showed de
tion from K41, that is, there are so-called intermittency c
rections to the exponents, given in Eqs.~21! and~22! @9#. In
addition, direct measurements of the velocity increme
PDF also revealed deviation from the self-similarity. Th
can be seen from stretched-exponential presentation of
PDF at the tails@10#,

p~uur !;
1

s~r !
exp $2xm~r !%. ~41!

It is the functional dependencem(r ) that makes it different
from the self-similar form~16!. As a matter of fact, thisr
dependence reflects the well-known fact that the tails
more pronounced for small distancesr @11#. The central part
of the PDF is not self-similar either@4#.

As long as the PDF deviates from the self-similar for
then, strictly speaking, the K41 hypotheses become inva
Even the mere existence of scaling~21!, ~22! with exponents,
not necessarily coinciding withjm5m/3, andzq5q/3, be-
comes an assumption~namely, that the self-similarity in a
narrow sense, Eqs.~14! and ~15!, holds for structure func-
tions of arbitrary orders!. The only scaling that always re
mains valid is the Kolmogorov law,

j351, ~42!

and, in particular, there is no grounda priori to state thatz3
should be also unity, cf. Eq.~23!, although its experimenta
value is quite close to unity.

This kind of deviation is mainly manifested in the tails,
for relatively high moments. That is to say that statistics
rare events are not self-similar. The main events, corresp
ing to the PDF core, and to the low moments, deviate fr
Gaussian form, or generally, from the self-similar presen
tion, but not dramatic. Typically, the deviation is about 10
15% @4#.

A. Asymmetry of the moments

It turns out that the asymmetry is much more sensitive
the deviation from self-similarity. Indeed, expression~27!
proves to be quite a strong restriction imposed on the P
First of all, by Eq. ~27!, the ratio, Sm

1(r )/Sm
2(r )5sq

1/sq
2

5const. But, as was already noticed in@7#, the experimental
measurements of these quantities~for different q! showed
that these are not at all constants, see also@4#.

Besides, for the zeroth order,S0
1(r )5s0

15const, and
S0

2(r )5s0
25const, that is, these two structure functio

should be independent ofr . Experimental curves, howeve
are not at all constants, see Fig. 2 in@4#. Moreover, ifS0

6(r )
would be constant, then these two constants are expecte
f-
re
e
a-
-

ts

he

re

,
d.

f
d-

-

o

F.

to

be 51/2. Indeed, at asymptotically larger ’s, when the PDF
becomes symmetric~see the end of Sec. III!, these functions
should be 51/2. Therefore, it is sufficient to calculat
S0

6(r 5r 0) to check if these quantities are equal to 1/2.
turns out, as an example for the runA, that S0

1(r 5r 0)
50.444, andS0

2(r 5r 0)50.398. These values are apprec
bly less than 1/2, and different from each other. As theS0

6(r )
functions should nevertheless asymptotically approach
they inevitably are functions ofr .

In addition to that, the behavior of these functions cor
sponds to what the ramp-model@6# predicted. Indeed, ac
cording to it, the length of the positive part of the sign
should be bigger than that of the negative—for all distanc
Only at r→` these lengths become equal to 1/2. In oth
words,

S0
2~r !,S0

1~r !, S0
6~r !→ 1

2 as r→`, ~43!

and experimental curves indeed behave accordingly@4#.
It has been long observed that flatnessF4(r ) is not a

constant, as it should be if the PDF is self-similar, see
~25!, and the deviation from a constant is supposed to ma
fest the intermittency. The same should be true for the p
tive and negative parts of the flatness. Namely, accordin
Eq. ~27!, if the PDF is self-similar, then

F4
1~r !5

s4
1

~s2
1!2 , F4

2~r !5
s4

2

~s2
2!2 , ~44!

so that bothF4
1(r ) andF4

2(r ) are constants~independent of
r !. Direct measurements of these quantities~compiled from
all four runs! show, however, quite substantial deviatio
from a constant, Fig. 1~a!. Note that the process is quit
intermittent. The classical flatness factor,F4(r 0)531.63~cf.
with Gaussian value 3!, asymmetric flatness,F4

1(r 0)
555.71, andF4

2(r 0)568.55: to compare with Gaussian
see@4#.

An even more noticeable discrepancy arises from the
servation that, if Eq.~16! is valid, then the scaling forSq

1(r )
and forSq

2(r ) should be as good as for the generalized str
ture functionSq(r ): the difference is only in coefficients. In
particular, the odd moments for the structure functio
should exhibit the same kind of scaling as correspond
moments for the generalized structure functions~except for
the first moment, in which case the coefficients̃1 turns to
zero!. However, it was long observed that it is not the ca
For example, the generalized structure functionS3(r ) nor-
mally exhibits bigger inertial~or scaling! range, than the
structure functionS̃3(r ), that is the Kolmogorov law. Be-
sides, the inertial range is bigger, and the data scatterin
less for the second moment,S2(r )5S̃2(r ), than for the Kol-
mogorov law, see, e.g.,@7#. The scaling of the higher odd
moments only deteriorates, and, for example, the fifth or
structure function is substantially worse in scaling than
fifth order generalized structure function: this can be se
from all four runs,A, B, C, and D, and actually it was
observed before.

We present here additional evidence for this observat
Direct measurements of the positive and negative mom
of ordersq51/2, 1, 2, 3, 4, 5, and 6 show that convergen
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FIG. 1. ~a! Flatness for both positive and negative distributions, compared with regular flatness,S4(r )/S2(r )2. The inset shows the box
counting for the runA. The Kolmogorov capacities are different for positive and negative distributions, andDK

2,DK
1 . ~b! Structure

functions for positive and negative velocity increments. For illustrative purposes the curves are shifted along the ordinate, so that
are arbitrary. This shifting did not affect, however, the relative distances between the moments of the same order, so that, e.g., th
positions ofS3

1(r ), S3
2(r ), andS̃3(r ) are displayed correctly. The distancer is given in units ofr 0 , see Sec. II. These units are used in

other figures as well.
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of the moments is satisfactory only up to the fourth mome
The moments substantially differ for each 2.53106 point
run, starting from the fifth order. Recall that the generaliz
structure functions exhibit good convergence up to the s
order @12#.

Figure 1~b! shows the structure functions listed abov
they are compiled from all four runs, that is, from 103106

points. It can be seen that the fifth and sixth moments ind
do not show decent scaling. All this behavior can be und
stood if we conjecture thatthe asymmetry is manifeste
mainly in the tails of the PDF. Indeed, the tails represent ra
events, and therefore they strongly fluctuate, being differ
for different realizations. We will seek for substantiation
this hypothesis below. But first we note that Fig. 1~b! mainly
confirms the trends found in@7#. Namely, Sq,1

2 (r )
,Sq,1

1 (r ), and Sq.1
2 (r ).Sq.1

1 (r ), except for few experi-
mental distances forq55,6. However, as mentioned, the
two moments show poor convergence anyway, and, for s
realizations~with 2.53106 points!, S5,6

2 (r ).S5,6
1 (r ) every-

where.
Note that the conjecture mentioned above, relating

asymmetry to the tails, in fact goes back to the ramp mo
t.
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e
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@6#, linking the asymmetry with intermittency. A quantitativ
description of this hypothesis was given by inequality

Dq
2,Dq

1 , ~45!

suggesting that at least the generalized dimensions co
sponding to the negative distribution,Dq

2 , are not trivial.
However, because of poor convergence of intermediate
ments of positive and negative velocity increments—
alone the higher moments—this inequality was confirm
only for the low moments@7#. Probably, the most trustwor
thy calculations correspond toq50, that is, to the Kolmog-
orov capacities@4#. Recall that the generalized dimensions
Eq. ~45! are defined by

Sq
1~r !;r ~12k!q2~D2Dq

1
!~q21!,

Sq
2~r !;r ~12k!q2~D2Dq

2
!~q21!, ~46!

see@6#, whereD is the dimension of space; we takeD51
below, considering a one-dimensional cut of the proce
Note, however, that the Kolmogorov capacities are de
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mined in@4# directly from the box counting, and according
the definition given by Kolmogorov. Recall that the scali
for the box counting is given by expressions

B0
6~r ur 0!;r D2DK

6

,

TABLE I. Asymmetry exponents for different momentsq. The
corresponding range is chosen as 51>r>501, that is one decade
The third moment structure function, i.e., the Kolmogorov law
given on a separate line.

q Sq
2 Sq

1

1/2 0.19560.001 (60.000) 0.19460.001 (60.000)
1 0.38260.001 (60.000) 0.38260.001 (60.000)
2 0.73160.003 (60.001) 0.73760.002 (60.001)
3 1.04760.003 (60.001) 1.06260.002 (60.000)

Kolmogorov law 0.99060.009 (60.002)
4 1.33260.004 (60.001) 1.36160.005 (60.001)
5 1.59660.004 (60.002) 1.64360.017 (60.006)
6 1.84760.005 (60.003) 1.92260.044 (60.013)
@cf. Eq. ~46! for q50#, whereB0
6(r ur 0) is the box counting

for two distributions,u65@ uu(r 0)u6u(r 0)#/2 ~correspond-
ing in fact to the velocity gradient, the positive and negat
parts being treated separately!, andr being the box size. An
example of such a counting is also given in the inset to F
1~a!, from the runA. The difference betweenDK

1 andDK
2 is

certainly within confidence level. Note that the express
~46!, relating the structure function exponents to the gen
alized dimensions without invoking the refined Kolmogor
hypotheses@13#, was obtained in@14#.

In spite of poor convergence of the fifth and sixth m
ments, we attempted to find a scaling range for all measu
moments, and to fit the curves with power laws. This ran
proved to be for one decade@bold straight lines on Fig. 1~b!#.
Table I shows the exponents found this way. The error b
correspond to standard deviation~from the straight line fits!,
and in the parentheses the errors are defined from usual
tines, treating the data scattering as Gaussian noise. It ca
seen that the Gaussian errors are always smaller than
dard deviation, and so we accept the conservative estima
of the errors in all calculations below: in particular, for th
generalized dimensions estimations, see Fig. 2. It is c
calculated

FIG. 2. ~a! The ratios of negative and positive moments,Sq

2(r )/Sq
1(r ), for q.1, inverse ratioSq

1(r )/Sq
2(r ) for q51/2, and fitting in

logarithmic scale. The inset gives the difference between the generalized dimensions. The solid line corresponds to the differences
directly from the ratios, and the dash-dotted line corresponds to these differences derived from the structure functions forr 5r 0 . ~b! The
generalized dimensions for positive and negative distributions, calculated from Eq.~46!.
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FIG. 3. Asymmetry of the PDF for two runs:~a! run A, and~b! run B. The positive and negative parts of the PDF are plotted in s
a way that they can be easily compared. The negative tails are always above the positive ones for small and moderate distances
r 51000. This could be true even forr 52000, as seen from the runA. Normally, however, this excess disappears at bigr ’s, together with
the disappearance of the tails themselves.
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from the estimation of the third moment, that is, the Kolmo
orov law, that conservative error bars indeed correspon
the law~42!, and the Gaussian errors can be considered a
underestimation.

It can be seen that the errors do become big for h
moments. However, the differences between the positive
negative distributions exponents are always within the c
fidence level. This difference corresponds to the differenc
the generalized dimensions, as seen from Eq.~46!. As the
difference is the main issue here, we tried to find an in
pendent way to its estimation, and that is by directly fitti
the ratio of the negative and positive moments plotted
Fig. 2~a!. The scaling range coincides with that in Fig. 1~b!.
We can see that, first, the ratio is never a constant, be
rather a function of distance; as mentioned, this is also
for the pipe experiments, see@7#, and@4#, and the beginning
of this subsection. Second, although the fitting for the m
ments ratios forq>4 do not look nice, the differences be
tween the generalized dimensions are still inside the co
dence level, that is, statistically significant; see inset to
figure. These differences are consistent with direct estima
of the dimensions, depicted on Fig. 2~b!. It can be seen from
the figure that, in spite of substantial data scattering,
differences between the exponents obey Eq.~45!, although
-
to
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the numerical values of these differences are small; see T
I. Also, we see from both spectraDq

1 and Dq
2 that they

decrease monotonously withq as should be according to th
theorem@15#. This gives additional credit to the exponen
given in Table I. Indeed, due to substantial scattering of
curves for the high moments, the corresponding expone
could have been simply spurious, and would not necessa
obey the theorem.

One more independent way to measure the differen
between the generalized dimensions is to make use of
~46! at r 5r 0 . This corresponds to studying the velocity gr
dient asymmetry. Or, in other words, using Eq.~46!, we have

^~u2!q&

^~u1!q&
5

Sq
2~r 0!

Sq
1~r 0!

5AS r 0

l D ~Dq
2

2Dq
1

!~q21!

,

where a constantA can be determined from the experimen
curve forq51. The experimental value is very close to uni
~which is quite natural!. Another constantr 0 / l cannot be
founda priori, and therefore this formula gives only the sig
of the differenceDq

12Dq
2 , and the trend. The differenc

proves to be positive indeed, as expected from Eq.~45!, and
increasing withq: see the inset to Fig. 2~a!. The correspond-
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FIG. 4. Contribution of the tails into the structure functions.~a! The r dependence ofs2(r ), that is, the effective width of the PDF core
or, to be more exact, the ratio of the second order cumulative structure function^u2&c to the structure function̂u2&. ~b! Comparison of the
Kolmogorov law, i.e., the third order structure function,^u3&, the third order generalized structure function,^uuu3&, and the fifth order
structure function,̂u5&, with the cumulative structure functions,^u3&c ,^uuu3&c ,^u5&c , and with the contribution of the tails,^u3& t , ^uuu3& t ,
and ^u5& t .
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ing ~dash-dotted! curve is adjusted in such a way that th
differences obtained in two different ways coincide atq
52. This procedure defines the unknown constantr 0 / l . Al-
though one cannot claim perfect agreement between the
and dash-dotted lines on the figure, but still, the differenc
positive for both of them, and the trend is to increase w
growing q.

B. Asymmetry of the PDF

The velocity increments PDF is known to be asymmet
and that can be seen from many plots, see, e.g.,@11#. In order
to check the conjecture that asymmetry is manifested in
tails, we compare the positive and negative tails direc
Figure 3 depicts positive and negative parts of the PDF
two files: runA in Fig. 3~a! and runB in Fig. 3~b!.

We note first that the deviation of the PDF from the se
similar form ~16! is very pronounced: it definitely does no
look like the same function for differentr ’s. The tails are
substantially bigger for small distances~cf. with @4# where it
was shown that the central part also changes withr , but only
on, say, 10%–15%!. This is, however, a well-known obse
lid
is
h

,

e
.
r

-

vation, see, e.g.,@11#, and formula~41! above.
In addition, this figure shows the asymmetry in the ta

Indeed, the negative parts are systematically higher than
positive ones. This means that negative parts are alw
more intermittent than the positive, in accordance with f
mula ~45!. This picture actually repeats itself for differen
runs; however, the big distances behave peculiarly. It can
seen from Fig. 3~a! that, for run A, the asymmetry forr
52000 proves to be gigantic: there were no events withu
.6s r 52000, and a relatively big number of events withu
,26s r 52000 were observed. This is an anomaly, howev
as seen from runB ~although there were no events withu
.6s r 52000 either!. Other runs also show that the asymme
for this distance is ‘‘normal,’’ i.e., as in runB. The asym-
metry practically disappears for very big distances, and
PDF approaches the Gaussian curve: that is, the tails di
pear as well.

To probe further the contribution of the tails, we defin
following @16#, cumulative structure functions,

^um&c5E
2cr

cr

ump~uur !du,
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FIG. 5. The joint PDF for the runA, in ‘‘canonical’’ variablesX and Y, defined in Eq.~33!. The two upper panels,~a! and ~b!,
correspond tor 51, and the lower panels,~c! and ~d!, to r 5200. The mesh surface presents the Gaussian joint PDF.
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wherecr53s(r ). Therefore, we will consider any contribu
tion to the velocity increments beyond 3s(r ) as coming
from the tails. That is, we define the contribution to the m
ments from the tails as

^um& t5E
2`

2cr

ump~uur !du1E
cr

`

ump~uur !du5^um&2^um&c .

Figure 4~a! depictss2
2(r )5^u2&c /^u2&, corresponding to run

A. We note first that, if the PDF is self-similar, then, by E
~16!, s2

2(r )5^u2&c /^u2&5*23
3 F(X)X2dX, and therefore it

is independent ofr . The figure shows, however, that this
not the case, ands2(r ) increases monotonously withr . As
argued in@4#, where this behavior ofs2(r ) was also ob-
served in the pipe turbulence, it happens because the co
bution of the tails is more pronounced at small distances,
decreases with growingr . The growth ofs2(r ) with dis-
tance showed some scaling, which was interpreted in@4# as a
contribution to the inertial range coming from the tails. T
scaling presented here corresponds to 1.5 decade. The
ing exponent almost coincides with corresponding expon
in @4# ~which was 0.002860.001!, and this supports an as
sumption that intermittency~that is, in fact, a contribution
from the tails! manifests itself in the inertial range~and not
only in viscous scales!.
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nt

The tails give an even more pronounced contribution
the higher moments, which is to be expected, of course. F
ure 4~b! presents such a comparison for the third and the fi
order structure functions from runA. We took the odd struc-
ture functions because they do not vanish only due to as
metry. In other words, the figure is intended to illustrate n
so much the contribution of the tails compared with the co
tribution of the PDF core, but rather to illustrate the asy
metry of the tails. It can be seen indeed that the third mom
is formed almost entirely by the tails, or rather, by the
asymmetry. The cumulative part is small, and^u3& t is only
slightly below the real moment̂u3&. Moreover, the fitting
for the tail part^u3& t;r 0.97960.008 is even slightly closer to
the Kolmogorov law~42! than the fitting for the real mo-
ment, ^u3&;r 1.03960.003. The fittings are shown by bold
straight lines, and the scaling holds for a decade and a h
For comparison, on the same figure, we also show the g
eralized structure function̂uuu3&, and its tail part,̂ uuu3& t . It
can be seen that, unlike the third order structure function,
generalized structure function is noticeably higher than
tail part. Clearly, the third moment is not a high one, a
therefore the tails do not give substantial contribution to
The asymmetry of the tails, however, proves to contrib
more to the third order structure function.

As to the fifth moment, the tails’ contribution practicall
entirely defines it: the tail part is indistinguishable from^u5&
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FIG. 6. The same as on Fig. 5, but for the runB.
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in Fig. 4~b!, the cumulative part giving a negligible contr
bution. Note one common trend on this figure: the contrib
tion of the tails is always bigger at small distances, and
creases with growingr : that is, the tail part of the moment
is always closer to the moment itself for small distances t
it is for the large distances. This, of course, correspond
the known fact that the tails are stronger at smallr . It is
noteworthy, however, that the tail contribution deviates n
ticeably for the generalized structure function of the th
moment even for the smallestr ’s ~increasing, of course, with
r !.

The contribution of the tails was checked in the same w
with other runs. We constructed cumulative structure fu
tions for the runsB, C, andD, to find qualitative agreemen
with Fig. 4. Namely, the Kolmogorov law is formed most
by the tails, unlike the generalized structure function of
third order; and the fifth moment structure function is form
almost entirely by the tails.

VI. EXPERIMENTAL MEASUREMENTS
OF THE TWO-POINT JOINT PDF

The measurements of the deviation from self-similarity~if
any! for the two-point PDF is useful to provide in dimen
sionless variables~33!. This form also easily reveals th
asymmetry of the PDF. Figure 5 depicts this kind of PDF
-
-

n
to

-

y
-

e

r

the core, that is, when both arguments change within th
standard deviations. This PDF is constructed for runA. We
see that, first, the difference from a Gaussian distribution
small distances is really dramatic. It is a factor of 3 or
Second, for the big distances the PDF becomes quite clos
Gaussian. In other words, the PDF changes substant
with r , and hence the PDF is not even nearly self-simil
The same two trends can be followed from Fig. 6, cor
sponding to runB. Furthermore, these trends definitely ex
in all runs, not presented here in the figures.

These two figures, 5 and 6, reveal some puzzling featu
with symmetry. What one would expect is asymmetry
respect toX, that is, traditional asymmetry due to the Ko
mogorov law, at least. It is clear, however, from Figs. 5~b!
and 6~b! that the contours are quite symmetric with resp
to the X axis. This may be explained by recalling that th
asymmetry is only noticeable at the velocity increments P
core ~and it is quite pronounced at the tails, as seen, e
from Fig. 3!. What is really surprising is that the joint PDF
rather asymmetric with respect to theY axis, as seen from
Figs. 5~b! and 6~b!. This asymmetry is decreasing with grow
ing distancer , and for big distances the PDF is more or le
symmetric; see Figs. 5~d! and 6~d!. The latter trend of de-
creasing asymmetry can be explained by decreasing sta
cal coherence between two points, when the distance is
ficiently big. For large distances, both variablesX and Y
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FIG. 7. Behavior and evolution of the PDF’s with respect to the variableY, for different distancesr , and compared with Gaussia
distribution ~always depicted by a solid line!. The left column@i.e., panels~a!, ~c!, and ~e!# corresponds to runA, and the right column
@panels~b!, ~d!, and~f!# corresponds to runC. The first row,~a! and~b!, depicts conditional PDF as functions of theX variable, and for fixed
Y561. The distance is also fixed, and is presented by two values,r 52 andr 5200. On the second row,~c! and~d!, the conditional PDF
is depicted as a function ofY, for X51, and for the same distancesr 52 andr 5200. Finally, the third row,~e! and~f!, depicts the PDF as
a function ofY, for the same distances. They are compared with one-point PDF from the same runs.
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present a sum of two statistically independent quantities,
therefore should not differ from each other in a statisti
sense.

To follow this puzzling asymmetry, we constructed co
ditional PDF’s involvingY dependence on Fig. 7. As see
from panel~a!, the conditional PDF is still quite symmetri
with respect toX. However, these two functions,p(XuY
51,r 52) andp(XuY521,r 52), being symmetric with re-
spect toX, are quite different~by a factor of two!; and both
functions differ substantially from a Gaussian distributio
For big distances this disparity vanishes. The same trend
seen in Fig. 7~b!, corresponding to runC, although the dif-
ference betweenp(XuY51,r 52) andp(XuY521,r 52) is
less pronounced.

The asymmetry with respect toY can be seen directly
from theY dependence in Figs. 7~c! and 7~d!, where condi-
tional PDFp(YuX51,r 52) andp(YuX51,r 5200) are de-
picted. The gravity centers of these curves are noticea
shifted to the right, and this time the asymmetry is mo
pronounced for runC, as compared with runA. Note that
the mean velocity is subtracted from the data, so that^v&
d
l

-

.
re

ly
e

50, and therefore this shifting has nothing to do with t
large scale velocity.

Finally, panels ~e! and ~f! of Fig. 7 depict the PDF
p(Yur 52) and p(Yur 5200), they are compared with
Gaussians, and with one-point PDFp(v/^v2&1/2) ~where
again^v&50!. We notice a slight asymmetry with the sam
trend; i.e., the PDF’s are shifted to the positive values,
only slightly. The most important feature, though, is the
dependence of the PDF from distancer . The PDF’s show
only very little difference when the distance increases.
fact, we measured theY distribution PDF for bigger dis-
tances, up tor 52000, with wider range for the variableY
~up to68s8!, and the PDF’s still look almost the same. W
found no tails in theY distribution, that is, unlike Fig. 3, the
distribution goes to zero atuYu.3.5, say, so that is goes eve
below the Gaussian distribution for largeuYu. This picture is
repeated in all runs. All this suggests that theY distribution
is self-similar. Furthermore, as seen from these panels, th
is not much difference between these PDF’s and the Ga
ian distribution on one hand, and with the one-point dis
bution on the other.



or

try

elf

io
y

he
it
t
lf

b
-

st
t

an
ve
io

i
,
-

th
l,
he
n

ar
a
h
ill
ry
th

hey
ts of

e

b-
ite
ly

y
the

all
int

the
to

he
n
be
all
r

lin-
ear
o-

ct-
n

ere
R.
ions
r,

56 6799PROBING ASYMMETRY AND SELF-SIMILARITY OF . . .
In summary, the PDF core, that is the distribution f
moderateX and Y (uXu,uYu<3), is quite symmetric with
respect to theX variable, but shows noticeable asymme
with respect to theY variable. Besides, the PDF is far from
being self-similar. However, both asymmetry and non-s
similarity disappear if the PDF is integrated overX, that is,
for pureY distributionp(Yur ).

VII. CONCLUSION

We see that asymmetry is tightly related to the deviat
from self-similarity, and hence, it is related to intermittenc
The asymmetry followsa priori from the Kolmogorov law
~19!: the third order structure function should vanish if t
PDF is symmetric. Therefore, the PDF cannot coincide w
Gaussian distributiona priori, the latter being the simples
and most natural self-similar distribution. Moreover, a se
similar PDFp(Xur ), X defined in Eq.~33a!, is a function of
X only. However, due to the asymmetry, the PDF should
written in the form~16!, which is, strictly speaking, not self
similar, because it is a function ofr as well.

These two deviations from self-similaritya priori are well
known, and they were not expected to result in a dra
change of statistics. This is certainly true, at least because
deviation from self-similarity is a subtle effect, rather th
dramatic. Nevertheless, a careful study of asymmetry pro
to be useful, the latter being quite sensitive to the deviat
In particular, simple geometrical considerations, resulting
the ramp model@6#, link the asymmetry with intermittency
as follows from expression~45!. The measurements pre
sented in this paper confirm this inequality; see Fig. 2~b!.

Still, this effect is subtle. Indeed, as seen from Table I,
differences between plus and minus exponents are smal
though they definitely are within the confidence level. T
only exception is the Kolmogorov capacities for the plus a
minus distributions; see inset to Fig. 1~a!: the difference is
appreciable. Of course, dealing with intermittency, we
implying in fact rare events: that is, we are implying th
high fluctuations are happening much more often than w
would follow from, say, a Gaussian distribution, but st
rarely. Now, relating the intermittency with asymmet
means that the latter is manifested mainly in the tails of
il
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distributions. Direct measurements of the tails show that t
are asymmetric; see Fig. 3. Further, direct measuremen
the contributions of the tails into the odd moments@results
depicted on Fig. 4~b!# indicate that the tails give most of th
contribution. These effects are not at all subtle.

Other substantial deviations from self-similarity are o
served for the joint two-point PDF. First, it deviates qu
substantially from the Gaussian distribution for relative
small distancesr , even at the core of the distribution~see
Figs. 5 and 6! quite unlike the classical PDF for the velocit
increments: the latter, as mentioned, deviates from
Gaussian distribution on 10–15%~see, e.g., Fig. 5 of@4#!.
Second and more important is that the joint PDF is not at
self-similar. In addition, and quite unexpectedly, the jo
PDF is asymmetric with respect to theY coordinate, instead
of being asymmetric with respect to theX axis.

This striking asymmetry with respect to theY axis is a
challenge yet to be explained. We can speculate that
Navier-Stokes equation is not symmetric with respect
v→2v, and therefore not symmetric with respect to t
Y→2Y transformation. Nevertheless, there are no knowa
priori reasons why the one-point distribution should
asymmetric. If it is symmetric, then it is easy to show that
odd momentŝ Y2m11& vanish~unlike the odd moments fo
the X distribution!. That is to say that theY PDF p(Yur )
should be symmetric: and, according to Figs. 7~e! and 7~f!, it
is quite symmetric. On the other hand, theY→2Y asymme-
try of the Navier-Stokes equation appears due to the non
ear term, or nonlinear interaction, and the same nonlin
interaction is also responsible for the nonvanishing third m
ment of theX distribution: see Eq.~19!, i.e., the Kolmogorov
law. This breaking of the symmetry due to nonlinearity, a
ing both on theX and theY distribution, may be the reaso
why the joint PDF is asymmetric.
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