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Probing asymmetry and self-similarity of fully developed turbulence
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An experimental study of atmospheric turbulent flow has been made to probe self-similarity and deviation
from self-similarity of turbulence. Special emphasis is made on asymmetry as an indicator of the deviation
from self-similarity. The scaling exponents for positive and negative parts of the velocity increments have been
obtained for several moment orders, up to the sixth. The exponents do show asymmetry, predicted by the
so-called ramp-modgB. I. Vainshtein and K. R. Sreenivasan, Phys. Rev. [7&t3085(1994]. This asym-
metry, however, can be estimated as moderate. Much more pronounced asymmetry is found in the tails of the
velocity increments probability distribution functioPDF'’s). In particular, the odd moments are mainly
defined by the asymmetry of the tails, rather than by that of the PDF core. The deviation from self-similarity
is also quite pronounced for the joint two-point PB1063-651X97)11212-Q

PACS numbgs): 47.27.Ak, 47.27.Jv

[. INTRODUCTION insight into the relationship between the asymmetry and in-
termittency of fully developed turbulence.

The similarity hypotheses, suggested by Kolmogorov
[1,2], have been studied for a long time. The so-called Kol-
mogorov 1941(K41) theory implies self-similar behavior,
that is, scaling laws for the structure functions, these func- The main approach used in this paper is experimental.
tions being introduced in the above-mentioned papers. The measurements reported here present data from atmo-

The similarity hypotheses is a subject of intense studiesspheric turbulence, obtained at Yale University. A hot-wire
not abating until now, see, e.g., recent revi@k The reason anemometer was placed about 35 m above the ground. Mean
is that the two similarity hypothesé$,2] in fact correspond wind speed was 7.6 m/sec, root-mean-square velocity 1.3
to nonintermittent systems. For Gaussian statistics, of cours#)/sec. Using Taylor’s hypothesis and local isotropy assump-
there is no intermittency, and the K41 two similarity hypoth- tion to obtain dissipation, one obtains the Taylor microscale
eses would be confirmed. It is interesting to note that the redReynolds number to be 9540, and the Kolmogorov micro-
distribution cannot be Gaussiarpriori because of Kolmog- scalesnto be 0.57 mm. The data were sampled at 5 kHz, and
orov law, also found in K411]. Indeed, the latter implies the whole data set consists of2a0° data points(courtesy
that the third moment of the velocity increments does noof K. R. Sreenivasan
vanish(and the first does for statistically homogeneous sys- This data set was divided into four files, each of them
tems, and therefore the distribution is asymmetric, and non-consisting of 2.% 10° data points. We will refer to them as
Gaussian. runsA, B, C, andD. Each run was treated separately, as if

This asymmetry is known, of course; the probability dis-we had four separate experiments. This made it possible to
tribution function, PDE, can be seen to be asymmetric, astudy convergence of quantities under consideration. The
least by measuring the skewne@shich is known to be main results, like calculation of moments of different orders,
negative. The asymmetry of the PDF is not very pronouncedare eventually averaged over all four files, provided the con-
at the core, where the velocity increments change withinyergence is satisfactory. Some of the results from different
say, three standard deviations; see, 4, That is, say, runs are compared with each other. For example, the tails of
99.7% of eventdif the PDF core can be approximated asthe PDF present rare events, and it is useful to see the dif-
Gaussian distributionis not really asymmetric. This “natu- ference and common features from different runs.
ral” asymmetry, due to the Kolmogorov law, was tradition-  The paper mainly deals with statistics of the velocity in-
ally interpreted as a manifestation of turbulent energy caserements for different separations The separation is con-
cade to the small scal¢5]. ventionally given in terms of Kolmogorov length We will

It has been suggested recently that the asymmetry may hgefer, however, to use the sample lenggh corresponding
also related to the deviation from self-similarity, i.e., in factto the smallest separation between two data points in any
it is related to the intermittendy6]. And indeed, both experi- particular experiment. There are two reasons for that. First,
mental measurements in pipe turbulence and direct numerthe distributions withr =rg, corresponding to the velocity
cal simulations[7] seem to confirm the so-called ramp gradient, play a special role, see, e[d), In particular, it is
model, suggested if6], see alsd4]. These measurements straightforward to provide the box counting for integer box
corresponded to the statistics of low moments, or, alternasizes, that is, in terms af,. Second, we also study in this
tively, to the PDF core. The aim of this paper is to study thepaper the two-point joint velocity statistics, for which case
asymmetry related phenomena at higher order statistics, othe Kolmogorov scale does not have an obvious preference.
equivalently, at the PDF tails, where the intermittency is di-Therefore, in order to keep the units the same throughout the
rectly manifested. This may give us more straightforwardpaper, we prefer to plot all distances in unitsrgf=1. This
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should not lead to confusion, at least because the Kolmog-

orov scale has the same order of magnitude @sin fact,

SAMUEL I. VAINSHTEIN

o(r)

h(r,)\)=U(M).

(6)

n=0.4r,, so that we may expect the inertial range to appear

atr>10rq, say.

It can be seen from E@5) that the PDF can be written as

We study self-similar PDF for the velocity increments in 5 fynction of one argument, namely,
Sec. lll, with emphasis on the requirements that the self-

similarity imposes on the positive and negative velocity in-
crements separately, that is, on the asymmetry of statistics.

In Sec. IV, the self-similar joint two-point PDF is intro-

duced. Section V presents experimental evidence of the deg g that is the reason it can be called self-similar.

viation from the self-similarity for the velocity increments

PDF. The section in part compiles previous results, and in

addition presents new measurements fromAh&, C, and

D runs. Special attention is devoted to the asymmetry, where
this deviation is manifested more strongly. Section VI de-

scribes the measurements of the joint PDF, and its deviatiopor the self-similar PDF,

both from Gaussian, and from self-similar form. Finally, the

main conclusions are given in Sec. VII.

Ill. SELF-SIMILAR PDF

We start with the PDF for the velocity increments
=A,v=v(X+r)—v(x), wherev(x) andv(x+r) are longi-
tudinal components of the velocities at pointsand x+r

u u
p(mf)=“’<x>' *=om "
We defined(r) through the second moment,
a(r)2=<u2)=f u?P(u,r)du. (8)
J d(X)dX=1, 9)
(normalization, and
f d(X)X2dX=1, (10)

correspondingly. Generally, for homogeneous turbulence,

the PDF, p(u|x,x+r), is a function of two arguments,

p(u|x,x+r)=P(u,r). There is an obvious symmetry for the

PDF,
P(u,r)=P(—u,—r), (1)

or, in a more compact form,
P(u,r)=P(nu,r), n=L. 2

Ir]

The PDF can be called self-similar, if it obeys the scale

transformation formula

P(u,Ar)du=P(hu,r)dhu, €)]
where, generally, the scale functioms=h(r,\). Naturally,
h(r,\=1)=1. The functiorh(r,\) can be specified, consid-
ering N in the vicinity of unity, A\=1+6, §<1. Then,
h(r,\)=1+6g(r), whereg(r)=4d,h(r,A=1).

Equation(3) is now reduced to

dP(u,r) B JP(u,r)

P(u,r)g(r)+ o g(r)u r r=0, (4
with the general solution,
Eokco
P(U,I’)—mq) m , (5)

where® is an arbitrary function, and
a(r)y=e-Jlgnar,

Substituting Eq(5) back into Eq.(3), we get for arbitrary
)\1

which follows from definition(8).
As o(r)? corresponds to a structure function of the sec-
ond order, it behaves accordingly. That is,

o(r)?=2[K(0)—K(r)], 11
whereK(r) is velocity correlation function,
K(r)=(v(x+r)v(x)).
Therefore,o(r=0)=0, and
o(r—.)2—-2K(0)=2 maxK(r)}>0. (12

As the PDF may not be negative, the functiefr) cannot
be negative either, see E(), that is,a(r)=0, and
o(—=r)y=o(r). (13

So far, apart from restrictiong§11)—(13), the function

o(r) is arbitrary, and, in particular, it need not be a power
law. We can assume, though, that the PDF is self-similar in a

narrow sense as well, in addition to the requiremé)t
Namely, let

o(Ar)=h(N)o(r). (14
Considering again =1+ 6, we get
dh
o(r)=CrP, pza()\zl)zconst, (15

an analog of Eq(5), andh(\)=\P, an analog of Eq(6).
However, there is no need for assumptid®), as shown
below.

Returning to the general requiremdj, we see that the
self-similar PDF must satisfp (—X)=®(X) to be an even
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function. Real PDF is asymmetric, and therefore, we have tand
relax the requiremen3) and write the PDF in a more gen-

| form, a
eral form Sy(r)=s(q)(C32er)¥3~rta, L4=3- (22)
1 nu
P(u,r)= a(r) q’(g(r)>' (16) . (I)bviously, for the self-similar PDF,,= ¢;,, and, in par-
ticular,
Thus,®=®(nX) is a function of two arguments, and hence,
strictly speaking, the PDF is not self-similar. However, the {3=&=1. (23

dependence enters only through the sigm,0nd therefore

we will still refer to the PDF in the fornt16) as self-similar. Thus, the PDF in the forni16), plus the Kolmogorov law

X m (19), recover the K41 hypotheses. On the other hand, the

We now calculate the structure functior®,(r)=(u™),  ppF is defined if all moments are knoi], and therefore
wherem is an integer, and generalized structure functionsi,a torm (16) is unambiguously defined by the K41 hypoth-
Sy(r)=(|ul9) (q is arbitrary. It follows from Eq.(16) that esed4], see alsd8].

It follows from Eg. (17) that skewness

S(n=38(m)a(r)™, 17
h Sa(r)
where Sk(r):’ézT)s/zzs(3):C°nSt’ (24)
s(m)=f P (nX)X"dX and flatness
and S4(r)
Fu(r)= ——5=s(4)=const. (25
Sy(N=s(@ar(r)?, (18) S2(r)
where It is noteworthy that the PDF in general self-similar form

(16) cannot be valid everywhere for arbitrary Indeed, any
odd moment of the structure function must vanishi -atw,
S(Q)Zf D (X)[X[dX. or, to be more specific, it should be smallrat!, wherel is
_ the integral(or correlation length. However, according to
It is clear, first, that, for evem, S,(r)=Sy(r). Second, Eg.(17) and Eqgs.(11) and (12), the structure function as-
5(0)=s(0)=1, from Eq.(9); S(1)=0 (follows from homo- ymptotically approaches a constant. That means that the
geneity, (u)=0); and finally's(2)=s(2)=1, by definition  most general self-similar PDF should be written in the form
(10).
If the PDF would be symmetric, then all the structure P(u r)ziq)(ﬂ r) 26)
functions of odd orders vanisB(m=2I+1)=0, | is integer. Yooy e’
However, the third moment does not vanish. As a matter of

fact, according to the Kolmogorov lafit], in inertial range, Where the explicitr dependence inb is negligible forr
<l, and forr=I| the PDF becomes symmetriso that the

'§3(r)= —er, (19 odd moments vanighAs the inertial range is defined ag
<r<|, where 5 is the Kolmogorov scale, the PDF in the
wheree is the energy dissipation rate. form (16) can be accepted for small and moderateAt r
Therefore, >|, the PDF is automatically independent rof presenting
- 3 . statistics of the sum of two independent variahlesnd
S(3)o(r)”=—ger, therefore Eq(16) can be used again: this time, with symmet-
ric ®. Only atr~I does the presentatiail6) fail, and the
PDF should be written in general for(@6).
o(r)~r3 As the goal of this paper is to study the deviation from
self-similarity, we note that asymmetry is quite a sensitive
Specifying the coefficient, we have indicator of this deviation. In order to see that, we will con-
sider, following[6], the positive and negative moments sepa-
o(r)=C3%(er)*=, (200 rately. That is, denot&, (r) the structure functions for posi-
tive increments, an&, (r) for negative. In other words,

so that

Here the coefficien€, is chosen in such a way that Ed.1)
is satisfied. Thus, the power law for(r) follows from the . o B 0
general self-similarity requiremeri8) and the Kolmogorov Sy (r):J ufp(ulr)du, S, (T)ZJ |lul%p(ulr)du,
law: no need to assume the self-similarity in a narrow sense, 0 o
as in Eqgs(14) and(15). so that

It then follows from Eqs(17) and(18) that

Sq(1)=Sq (1) +Sq(r),  Sm(r)=Sn(r)—=Sp(r).

~ m
_= 3/2_.\m/3_ . ém _
Sm(r) =s(M)(C57er)™~r%, - fm=75, (21 For the PDF in the forni16), if valid,
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S;(r):sarg(r)q' Sy (N =sqo(r)9, (27) cf. Eq. (7). As mentioned, one of the variables shouldwbe
Now, in order to keep the symmet(28), we suggest that the
where second variable is’ +v, so that two “canonical” variables
B o read
sngo D (nX)XX, s, =f7wc1>(nX)|x|de. . U=v'—0 53
IV. SELF-SIMILAR JOINT TWO-POINT PDF , ,
u=v +v
Consider the two-point PDRp(v,v’|x,x")=P(v,v’,r), Y= WW/?’ (33D
x"=x+r, the probability density for the velocity to assume
the valuesy andv’ at the pointsx andx’. Note, first, that And indeed, as an example, the Gaussian distribution,
the PDF obviously obeys the symmetry property,
pe(v,v’|x,x")
p(v,o'[r)=p(v’v|-r), (28) .
corresponding to Eq(l), and, second, the velocity incre- = 27 K(0)>—K(r)2]™
ments PDF used in the previous section follows from the
two-point PDF, K(0)v?—2K(r)vv'+K(0)v'?

XX T T IK(0)2—K(N) 7] !

ulr)= v'—u,v’|r)dov’. . . o
p(ulr) f P I can be written in a self-similar form,

It is clear from this expression, and from E®8), that the 1 .

joint PDF cannot be expected to be self-similar in respect to Pe(X,Y)= o e~ (XTHYIZ, (34)
variablesy andv’: if it can be written in a self-similar form,

then at Iea_lst one of the vanab]es should {b@v’—y. In Here o (r) is found from Eq.(11), as before, and

order to find the second variable, we first define two-

dimensional self-similarity for(unknown variablesv and o' (N?={u'?={(v'+v)?)=2[K(0)+K(r)]. (35
v’, both presenting some combinations of the velocities
andv’. Namely, the PDF is self-similar if it obeys In addition to being self-similgithe PDF(34) is indepen-
e _ o o dent ofr], the Gaussian distribution presents two statistically
P(v,v’,Ar)dvdv’=P(hv,h'v’,r)dhvdh’s’, (29)  independent variablex andY. Besides, the functional de-

pendence of the PDF on the variab{ecoincides with that
for the variableY. That is to say that there is only one
functional dependence in Eq34). In general, however, as
seen from Eq(32), the PDF is two dimensional, and cannot
9P 9P oP be presented as a produbt (X)P,(Y), in which case the
Pg(r)+ = g(rNv+ —=9g'(r)v’——r=0, (30 variables would be independent.

du du ar A more general form of self-similar two-point PDF incor-
porates possible asymmetry, analogous to (E6), that is,

whereh=h(r,\), andh’=h’'(r,\), cf. Eq.(3). Considering
again the scale factarin the vicinity of unity,A =1+ 8, we
obtain the following equation foP,

where g(r)=d;h(r,Ax=1), and g'(r)=dz.h'(r,A=1),
with the general solution

2|1 = ——— ®(nX)Y), 36
1 = = p(v,v'|r) (o (1) ( ) (36)
P= o= =, =, (31)
a(r)o'(r) ~la(r)" o'(r) whereX andY are defined in Eq(33), or
where p(X,Y|r)=®(nX,Y), (37)
G(r)y=e - J@ndr G ()= J(e"nar cf. Eq. (7).
We note finally that any joint PDF can be written in terms
As a result, analogous to E¢f), we have of dimensionless variableX, andY, and generally,
_a(n) ;o a'(r) pPX,Y|r)=®(X,Y,r). (39)
h(l’,)\)—m and h (r,)\)——m.

The PDF in dimensionless forr{88) is useful to measure
It is clear now that if the joint PDF is self-similar, then it experimentally, because it can be easily compared with a
can be written as a function of two argumefiisstead of Gaussian, and with self-similar PDF: in the latter case the
three:v, v', andr). Namely, PDF should be independent of
Obviously,

( v v’
P\ &

1% v
) =0(XY), X=mee, Y= =
) o(r) 7 p(x|r)=f O(X,Y,)dY, (39)

!
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and be =1/2. Indeed, at asymptotically largés, when the PDF
becomes symmetrisee the end of Sec. )lIthese functions
p(Y|r)=f d(X,Y,r)dX. (40) srlould be =1/2. Therefore, it |s”suff|C|ent to calculate
Sy (r=rg) to check if these quantities are equal to 1/2. It
turns out, as an example for the rux that S;(r=rg)
V. DEVIATIONS FROM SELF-SIMILARITY =0.444, andS; (r =r)=0.398. These values are apprecia-
bly less than 1/2, and different from each other. As$f¢r)

Probing the K41 hypotheses, or, equivalently, the self : :
similarity %f PDF by di?/epct measuremen?s showe):j that ther unctions should nevertheless asymptotically approach 1/2,
! ey inevitably are functions af.

are noticeable deviations from K41. Measurements of th " . .
scaling exponents of the structure functions showed devia- In addition to that, the behavior of these functions corre-
tion from K41, that is, there are so-called intermittency cor-Spon.dS to yvhat the ramp-modgd] pr¢d|cted. Indeed, ac-
rections to the exponents, given in E¢®1) and(22) [9]. In cording to I, the length of the positive part of th? signal
addition, direct measurements of the velocity increment§oUld be bigger than that of the negative—for all distances.

PDF also revealed deviation from the self-similarity. ThisOnly atr— these lengths become equal to 1/2. In other

can be seen from stretched-exponential presentation of tH’é(ords’
PDF at the tallS[lO], Sa(r)<sa—(r), S(‘)_"(r)_>% asr—oo, (43)
p(ulr)~ L exp{_xm<r>}_ (41) and experimental curves indeed behave accordifgly
o(r) It has been long observed that flatndsgr) is not a

constant, as it should be if the PDF is self-similar, see Eq.
e . (25), and the deviation from a constant is supposed to mani-
from the self-similar form(16). As a matter of fact, this fest the intermittency. The same should be true for the posi-

dependence reflects the we_ll—known fact that the tails arg o and negative parts of the flatness. Namely, according to
more pronounced for small distanaegl1]. The central part Eq. (27), if the PDF is self-similar, then

of the PDF is not self-similar eithdd].

As long as the PDF deviates from the self-similar form, st
then, strictly speaking, the K41 hypotheses become invalid. Fr(r)= T“Z, F,(r)=
Even the mere existence of scalif®{), (22) with exponents, (s7)
not necessarily coinciding witlf,=m/3, and{,=q/3, be- ~ _
comes an assumptiomamely, that the self-similarity in a SO that bothF; (r) andF, (r) are constanténdependent of
narrow sense, Eq¢14) and (15), holds for structure func- r). Direct measurements of these quantitiesmpiled from

tions of arbitrary ordeps The only scaling that always re- all four rung show, however, quite substantial deviation

It is the functional dependenca(r) that makes it different

)

mains valid is the Kolmogorov law, from a constant, Fig. (B). Note that the process is quite
intermittent. The classical flatness factby(r ) = 31.63(cf.
§&=1, (42)  with Gaussian value )3 asymmetric flatnessF; (ro)

. . . . =55.71, andF, (r,) =68.55: to compare with Gaussian 6,
and, in particular, there is no grousdpriori to state thaty see[4] 4(ro) P

should be also unity, cf. Eq23), although its experimental

; : : An even more noticeable discrepancy arises from the ob-
valueis quite close to unity.

) : ) X . +
This kind of deviation is mainly manifested in the tails, or servation that, if EQ(16) is valid, then the scaling fo, (r)

for relatively high moments. That is to say that statistics of2"d f0rSy () shou.ld be as good as for the generalized struc-
rare events are not self-similar. The main events, correspondir€ functionSy(r): the difference is only in coefficients. In

ing to the PDF core, and to the low moments, deviate fromoarticular, the odd moments for the structure functions
Gaussian form, or generally, from the self-similar presentaSnould exhibit the same kind of scaling as corresponding

tion, but not dramatic. Typically, the deviation is about 10— Moments for the generalized structure functiescept for
15% [4]. the first moment, in which case the coefficientturns to

zerg. However, it was long observed that it is not the case.
For example, the generalized structure funct®yir) nor-
mally exhibits bigger inertial(or scaling range, than the
It turns out that the asymmetry is much more sensitive tastructure functionS(r), that is the Kolmogorov law. Be-
the deviation from self-similarity. Indeed, expressi®@V)  sides, the inertial range is bigger, and the data scattering is
proves to be quite a strong restr.iction imposed on the PDRggs for the second mometﬁz(r)=§2(r), than for the Kol-
First of all, by Eq.(27), the ratio, Sp(r)/S,(r)=s5/S;  mogorov law, see, e.g[7]. The scaling of the higher odd
=const. But, as was already noticed[ifl, the experimental moments only deteriorates, and, for example, the fifth order
measurements of these quantitiésr different q) showed  structure function is substantially worse in scaling than the
that these are not at all constants, see pigo fifth order generalized structure function: this can be seen
Besides, for the zeroth orde6, (r)=sy; =const, and from all four runs,A, B, C, andD, and actually it was
Sy (r)=s, =const, that is, these two structure functionsobserved before.
should be independent of Experimental curves, however,  We present here additional evidence for this observation.
are not at all constants, see Fig. Z4}. Moreover, ifS; (r) Direct measurements of the positive and negative moments
would be constant, then these two constants are expected ¢b ordersq=1/2, 1, 2, 3, 4, 5, and 6 show that convergence

A. Asymmetry of the moments
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FIG. 1. (a) Flatness for both positive and negative distributions, compared with regular fla&&98S,(r)2. The inset shows the box
counting for the runA. The Kolmogorov capacities are different for positive and negative distributionsDandDy; . (b) Structure
functions for positive and negative velocity increments. For illustrative purposes the curves are shifted along the ordinate, so that the units
are arbitrary. This shifting did not affect, however, the relative distances between the moments of the same order, so that, e.g., the relative
positions ofS; (r), S;(r), andS;(r) are displayed correctly. The distancés given in units ofr,, see Sec. II. These units are used in all
other figures as well.

of the moments is satisfactory only up to the fourth moment[6], linking the asymmetry with intermittency. A quantitative
The moments substantially differ for each 2.50° point  description of this hypothesis was given by inequality
run, starting from the fifth order. Recall that the generalized

structure functions exhibit good convergence up to the sixth D;<Dq+ , (45
order[12].

Figure Ab) shows the structure functions listed above;suggesting that at least the generalized dimensions corre-
they are compiled from all four runs, that is, from>@¢®  sponding to the negative distributioB,, , are not trivial.
points. It can be seen that the fifth and sixth moments indeetlowever, because of poor convergence of intermediate mo-
do not show decent scaling. All this behavior can be underments of positive and negative velocity increments—let
stood if we conjecture thathe asymmetry is manifested alone the higher moments—this inequality was confirmed
mainly in the tails of the PDAndeed, the tails represent rare only for the low moment$7]. Probably, the most trustwor-
events, and therefore they strongly fluctuate, being differenthy calculations correspond =0, that is, to the Kolmog-
for different realizations. We will seek for substantiation of orov capacitie$4]. Recall that the generalized dimensions in
this hypothesis below. But first we note that Figo)lmainly ~ Eq. (45) are defined by
confirms the trends found in[7]. Namely, S;_(r)

N
<Sy-1(r), and S;-1(r)>Sy-4(r), except for few experi- Sy (r)~rt=#a=(B=Dg)la=1),

mental distances foq=5,6. However, as mentioned, these

two moments show poor convergence anyway, and, for some sq*(r)~r(1*K>q*<D*D§>(q*1>, (46)
realizations(with 2.5x 10° points, 856(r)>8§6(r) every-

where. see[6], whereD is the dimension of space; we take=1

Note that the conjecture mentioned above, relating thdelow, considering a one-dimensional cut of the process.
asymmetry to the tails, in fact goes back to the ramp modeNote, however, that the Kolmogorov capacities are deter-
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TABLE I.. Asymme.try exponents for different momerqs The [cf. Eq. (46) for q=0], WhereBg(r|r0) is the box counting
corresponding range is chosen as=5% 501, that is one decade. o two distributions,ui=[|u(ro)| +u(rg)]/2 (correspond-

The third momenttstlr_ucture function, i.e., the Kolmogorov law is ing in fact to the velocity gradient, the positive and negative
given on a separate fine. parts being treated separatelgndr being the box size. An

— + example of such a counting is also given in the inset to Fig.
d S S 1(a), from the runA. The difference betweeB, andDy is
' . K K

172 0.195-0.001 (+0.000) 0.194:0.001 (+0.000) certainly within confidence level. Note that the expression
1 0.382-0.001 (-0.000) 0.382-0.001 (+0.000) (46), relating the structure function exponents to the gener-
2 0.731:0.003 (+0.001) 0.73%0.002 (+0.001) alized dimensions without invoking the refined Kolmogorov
3 1.047-0.003 (=0.001) 1.062-0.002 (=0.000) hypothese$13], was obtained if14].

Kolmogorov law 0.996:0.009 (+0.002) In spite of poor convergence of the fifth and sixth mo-
4 1.332£0.004 (+0.001) 1.3610.005 (+0.001) ments, we attempted to find a scaling range for all measured
5 1.596£0.004 (+0.002) 1.6430.017 (+0.006) moments, and to fit the curves with power laws. This range
6 1.84'70.005 (+0.003) 1.922-0.044 (x0.013) proved to be for one decadleold straight lines on Fig.(b)].

Table | shows the exponents found this way. The error bars
correspond to standard deviatifrom the straight line fits
mined in[4] directly from the box counting, and according to and in the parentheses the errors are defined from usual rou-
the definition given by Kolmogorov. Recall that the scalingtines, treating the data scattering as Gaussian noise. It can be
for the box counting is given by expressions seen that the Gaussian errors are always smaller than stan-
dard deviation, and so we accept the conservative estimation
. + of the errors in all calculations below: in particular, for the
Bo (r]ro)~rPPx, generalized dimensions estimations, see Fig. 2. It is clear
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FIG. 2. (8 The ratios of negative and positive momerﬁé(r)lsar(r), for g>1, inverse rati(ﬁg(r)lsa(r) for g=1/2, and fitting in
logarithmic scale. The inset gives the difference between the generalized dimensions. The solid line corresponds to the differences calculated
directly from the ratios, and the dash-dotted line corresponds to these differences derived from the structure functions fdy) The
generalized dimensions for positive and negative distributions, calculated frod@qg.
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FIG. 3. Asymmetry of the PDF for two runga) run A, and(b) run B. The positive and negative parts of the PDF are plotted in such
a way that they can be easily compared. The negative tails are always above the positive ones for small and moderate distances, say up to
r=21000. This could be true even for=2000, as seen from the run Normally, however, this excess disappears atrtsgtogether with
the disappearance of the tails themselves.

from the estimation of the third moment, that is, the Kolmog-the numerical values of these differences are small; see Table
orov law, that conservative error bars indeed correspond th Also, we see from both spectnaq+ and D, that they
the law(42), and the Gaussian errors can be considered as afecrease monotonously withas should be according to the
underestimation. theorem[15]. This gives additional credit to the exponents
It can be seen that the errors do become big for highyiven in Table I. Indeed, due to substantial scattering of the
moments. However, the differences between the positive aneurves for the high moments, the corresponding exponents
negative distributions exponents are always within the coneould have been simply spurious, and would not necessarily
fidence level. This difference corresponds to the difference ibey the theorem.
the generalized dimensions, as seen from @6). As the One more independent way to measure the differences
difference is the main issue here, we tried to find an indebetween the generalized dimensions is to make use of Eq.
pendent way to its estimation, and that is by directly fitting(46) atr =r. This corresponds to studying the velocity gra-

the ratio of the negative and positive moments plotted ordient asymmetry. Or, in other words, using F46), we have
Fig. 2(a). The scaling range coincides with that in Figbjil

We can see that, first, the ratio is never a constant, being
rather a function of distance; as mentioned, this is also true e = o =
for the pipe experiments, s¢€], and[4], and the beginning (W% sq(ro)
of this subsection. Second, although the fitting for the mo-

ments ratios folg=4 do not look nice, the differences be- Where a constark can be determined from the experimental
tween the generalized dimensions are still inside the conficurve forq=1. The experimental value is very close to unity
dence level, that is, statistically significant; see inset to thigwhich is quite natural Another constant,/l cannot be
figure. These differences are consistent with direct estimatiofounda priori, and therefore this formula gives only the sign
of the dimensions, depicted on Figb? It can be seen from of the differenceD+—D; , and the trend. The difference
the figure that, in spite of substantial data scattering, theroves to be positive indeed, as expected from(Ef), and
differences between the exponents obey @&), although increasing withg: see the inset to Fig.(d). The correspond-

(U9 S;(ro) (ro)wq—DJ)(q—D
1
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FIG. 4. Contribution of the tails into the structure functio®.Ther dependence af,(r), that is, the effective width of the PDF core,
or, to be more exact, the ratio of the second order cumulative structure fu(mﬁ)qnto the structure functio(]u2>. (b) Comparison of the
Kolmogorov law, i.e., the third order structure functigm®), the third order generalized structure functigfy|®), and the fifth order
structure function{u®), with the cumulative structure function&;®).,(|ul).,(u®)., and with the contribution of the tailéu®),, (Jul®);,
and{u®),.

ing (dash-dotted curve is adjusted in such a way that the vation, see, e.g[,11], and formula(41) above.
differences obtained in two different ways coincide cat In addition, this figure shows the asymmetry in the tails.
=2. This procedure defines the unknown constamt. Al- Indeed, the negative parts are systematically higher than the
though one cannot claim perfect agreement between the soljgbsitive ones. This means that negative parts are always
and dash-dotted lines on the figure, but still, the difference isnore intermittent than the positive, in accordance with for-
positive for both of them, and the trend is to increase withmula (45). This picture actually repeats itself for different
growingg. runs; however, the big distances behave peculiarly. It can be
seen from Fig. @) that, for runA, the asymmetry for
=2000 proves to be gigantic: there were no events with
>60,-2000, and a relatively big number of events with

The velocity increments PDF is known to be asymmetric,< — 60, - 900 Were observed. This is an anomaly, however,
and that can be seen from many plots, see, L], In order  as seen from rum (although there were no events with
to check the conjecture that asymmetry is manifested in the>60, - »9q0 €ithep. Other runs also show that the asymmetry
tails, we compare the positive and negative tails directlyfor this distance is “normal,” i.e., as in ruB. The asym-
Figure 3 depicts positive and negative parts of the PDF fometry practically disappears for very big distances, and the
two files: runA in Fig. 3@ and runB in Fig. 3b). PDF approaches the Gaussian curve: that is, the tails disap-

We note first that the deviation of the PDF from the self-pear as well.
similar form (16) is very pronounced: it definitely does not  To probe further the contribution of the tails, we define,
look like the same function for differents. The tails are following [16], cumulative structure functions,
substantially bigger for small distancés. with [4] where it
was shown that the central part also changes witbut only
on, say, 10%-159% This is, however, a well-known obser-

B. Asymmetry of the PDF

Whe= [ wpiuinau,
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(e) (d)

r=200

Adieh POk

FIG. 5. The joint PDF for the rum, in “canonical” variablesX andY, defined in Eq.(33). The two upper panelga) and (b),
correspond ta =1, and the lower panel$¢) and (d), to r=200. The mesh surface presents the Gaussian joint PDF.

wherecr= 3o (r). Therefore, we will consider any contribu-  The tails give an even more pronounced contribution to
tion to the velocity increments beyondo8) as coming the higher moments, which is to be expected, of course. Fig-
from the tails. That is, we define the contribution to the mo-ure 4b) presents such a comparison for the third and the fifth
ments from the tails as order structure functions from ruk. We took the odd struc-
ture functions because they do not vanish only due to asym-
—cr o metry. In other words, the figure is intended to illustrate not
(Um>t:J u™p(ulr)d U+j u™p(ulr)du=(u™—(u™..  so much the contribution of the tails compared with the con-
o ¢ tribution of the PDF core, but rather to illustrate the asym-
metry of the tails. It can be seen indeed that the third moment
Figure 4a) depictso3(r) =(u?)./(u?), corresponding to run is formed almost entirely by the tails, or rather, by their
A. We note first that, if the PDF is self-similar, then, by Eq. asymmetry. The cumulative part is small, ape), is only
(16), o3(r)=(u?)c/(u?)= 2, ®(X)X2dX, and therefore it slightly below the real momentu3). Moreover, the fitting
is independent of. The figure shows, however, that this is for the tail part(u®),~r%97-00% s even slightly closer to
not the case, and-(r) increases monotonously with As  the Kolmogorov law(42) than the fitting for the real mo-
argued in[4], where this behavior ofr,(r) was also ob- ment, (u3)~r193%:0003 The fittings are shown by bold
served in the pipe turbulence, it happens because the contstraight lines, and the scaling holds for a decade and a half.
bution of the tails is more pronounced at small distances, anBfor comparison, on the same figure, we also show the gen-
decreases with growing. The growth ofo,(r) with dis-  eralized structure functiof{u|®), and its tail part{|u|®);. It
tance showed some scaling, which was interpretédjias a can be seen that, unlike the third order structure function, the
contribution to the inertial range coming from the tails. Thegeneralized structure function is noticeably higher than its
scaling presented here corresponds to 1.5 decade. The scilil part. Clearly, the third moment is not a high one, and
ing exponent almost coincides with corresponding exponertherefore the tails do not give substantial contribution to it.
in [4] (which was 0.002& 0.001), and this supports an as- The asymmetry of the tails, however, proves to contribute
sumption that intermittencythat is, in fact, a contribution more to the third order structure function.
from the tail3 manifests itself in the inertial rangand not As to the fifth moment, the tails’ contribution practically
only in viscous scalgs entirely defines it: the tail part is indistinguishable fr@o?)



56 PROBING ASYMMETRY AND SELF-SIMILARITY OF . .. 6797

Yok Bk

r=200

Adink PR

>x O

FIG. 6. The same as on Fig. 5, but for the fn

in Fig. 4(b), the cumulative part giving a negligible contri- the core, that is, when both arguments change within three
bution. Note one common trend on this figure: the contribustandard deviations. This PDF is constructed for AuniWe

tion of the tails is always bigger at small distances, and desee that, first, the difference from a Gaussian distribution for
creases with growing: that is, the tail part of the moments small distances is really dramatic. It is a factor of 3 or 4.
is always closer to the moment itself for small distances thasecond, for the big distances the PDF becomes quite close to
it is for the large distances. This, of course, corresponds t@gayssian. In other words, the PDF changes substantially
the known fact that the tails are stronger at smalllt is  ith r, and hence the PDF is not even nearly self-similar.
noteworthy, however, that the tail contribution deviates NoThe same two trends can be followed from Fig. 6, corre-

ticeably for the generalized structure function of the thirdsponding to rurB. Furthermore, these trends definitely exist
moment even for the smalles’ (increasing, of course, with in a1l runs. not presented here in the figures.

r). o ] ) These two figures, 5 and 6, reveal some puzzling features
The contribution of the tails was checked in the same wayith, symmetry. What one would expect is asymmetry in
with other runs. We constructed cumulative structure funC'respect toX, that is, traditional asymmetry due to the Kol-
tiqns fpr the runsB, C, andD, to find qualitative agreement mogorov law, at least. It is clear, however, from Figéh)5
with Fig. 4. Namely, the Kolmogorov law is formed mostly 5nq gp) that the contours are quite symmetric with respect
by the tails, unlike the generalized structure function of the,y the X axis. This may be explained by recalling that the
third order; and the fifth moment structure function is formedasymmetry is only noticeable at the velocity increments PDF
almost entirely by the tails. core (and it is quite pronounced at the tails, as seen, e.g.,
from Fig. 3. What is really surprising is that the joint PDF is
rather asymmetric with respect to tieaxis, as seen from
Figs. §b) and &b). This asymmetry is decreasing with grow-
ing distancer, and for big distances the PDF is more or less
The measurements of the deviation from self-similafity =~ symmetric; see Figs.(8) and 6d). The latter trend of de-
any) for the two-point PDF is useful to provide in dimen- creasing asymmetry can be explained by decreasing statisti-
sionless variable$33). This form also easily reveals the cal coherence between two points, when the distance is suf-
asymmetry of the PDF. Figure 5 depicts this kind of PDF forficiently big. For large distances, both variablgsand Y

VI. EXPERIMENTAL MEASUREMENTS
OF THE TWO-POINT JOINT PDF
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FIG. 7. Behavior and evolution of the PDF's with respect to the varidhldor different distances, and compared with Gaussian
distribution (always depicted by a solid lineThe left column([i.e., panelga), (c), and(e)] corresponds to rud, and the right column
[panels(b), (d), and(f)] corresponds to ru@. The first row,(a) and(b), depicts conditional PDF as functions of tkesariable, and for fixed
Y= +1. The distance is also fixed, and is presented by two vatueg, andr =200. On the second rowg) and(d), the conditional PDF
is depicted as a function of, for X=1, and for the same distances 2 andr =200. Finally, the third row(e) and(f), depicts the PDF as
a function ofY, for the same distances. They are compared with one-point PDF from the same runs.

present a sum of two statistically independent quantities, ane0, and therefore this shifting has nothing to do with the
therefore should not differ from each other in a statisticallarge scale velocity.
sense. Finally, panels(e) and (f) of Fig. 7 depict the PDF
To follow this puzzling asymmetry, we constructed con-p(Y|r=2) and p(Y|r=200), they are compared with
ditional PDF’s involvingY dependence on Fig. 7. As seen Gaussians, and with one-point POKuv/(v2)Y?) (where
from panel(a), the conditional PDF is still quite symmetric again(v)=0). We notice a slight asymmetry with the same
with respect toX. However, these two functiong(X|Y  trend; i.e., the PDF’s are shifted to the positive values, but
=1r=2) andp(X|Y=—1r=2), being symmetric with re- only slightly. The most important feature, though, is the in-
spect toX, are quite differenfby a factor of twg; and both  dependence of the PDF from distanceThe PDF's show
functions differ substantially from a Gaussian distribution.only very little difference when the distance increases. In
For big distances this disparity vanishes. The same trends afact, we measured th¥ distribution PDF for bigger dis-
seen in Fig. {), corresponding to ru, although the dif- tances, up ta=2000, with wider range for the variabte
ference betweep(X|Y=1r=2) andp(X|Y=—1r=2) is  (up to+8c’), and the PDF'’s still look almost the same. We
less pronounced. found no tails in theY distribution, that is, unlike Fig. 3, the
The asymmetry with respect t§ can be seen directly distribution goes to zero &¥|> 3.5, say, so that is goes even
from theY dependence in Figs(@ and 7d), where condi- below the Gaussian distribution for lar{¢|. This picture is
tional PDFp(Y|X=1r=2) andp(Y|X=1r=200) are de- repeated in all runs. All this suggests that thelistribution
picted. The gravity centers of these curves are noticeablis self-similar. Furthermore, as seen from these panels, there
shifted to the right, and this time the asymmetry is moreis not much difference between these PDF’s and the Gauss-
pronounced for rurC, as compared with ru. Note that ian distribution on one hand, and with the one-point distri-
the mean velocity is subtracted from the data, so tbat  bution on the other.
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In summary, the PDF core, that is the distribution for distributions. Direct measurements of the tails show that they
moderateX and Y (|X|,|Y|<3), is quite symmetric with are asymmetric; see Fig. 3. Further, direct measurements of
respect to theX variable, but shows noticeable asymmetrythe contributions of the tails into the odd momeptssults
with respect to ther variable. Besides, the PDF is far from depicted on Fig. é)] indicate that the tails give most of the
being self-similar. However, both asymmetry and non-self-contribution. These effects are not at all subtle.
similarity disappear if the PDF is integrated ovér that is, Other substantial deviations from self-similarity are ob-
for pureY distributionp(Y|r). served for the joint two-point PDF. First, it deviates quite
substantially from the Gaussian distribution for relatively
small distances, even at the core of the distributidsee
Figs. 5 and B quite unlike the classical PDF for the velocity

We see that asymmetry is tightly related to the deviationncrements: the latter, as mentioned, deviates from the
from self-similarity, and hence, it is related to intermittency. Gaussian distribution on 10-15%ee, e.g., Fig. 5 of4]).

The asymmetry followsa priori from the Kolmogorov law  second and more important is that the joint PDF is not at all
(19) the third order structure function should vanish if the self-similar. In addition, and quite unexpected|y, the joint
PDF is symmetric. Therefore, the PDF cannot coincide withppF is asymmetric with respect to tivecoordinate, instead
Gaussian distributiom priori, the latter being the simplest f being asymmetric with respect to theaxis.

and most natural self-similar distribution. Moreover, a self-  This striking asymmetry with respect to the axis is a
similar PDFp(X|r), X defined in Eq(33a), is a function of  challenge yet to be explained. We can speculate that the
X only. However, due to the asymmetry, the PDF should beyavier-Stokes equation is not symmetric with respect to
Written in the form(16), Wh|Ch iS, Stl’iCt|y Speaking, not Self' v——vU, and therefore not Symmetric with respect to the
similar, because it is a function ofas well. Y— —Y transformation. Nevertheless, there are no knewn

These two deviations from self-similarigypriori are well  priori reasons why the one-point distribution should be

known, and they were not expected to result in a drastigsymmetric. If it is symmetric, then it is easy to show that all
change of statistics. This is certainly true, at least because thgyq momentg Y2™* 1) vanish (unlike the odd moments for
deviation from self-similarity is a subtle effect, rather thanpe x distribution. That is to say that th& PDF p(Y|r)
dramatic. Nevertheless, a careful study of asymmetry provednhould be symmetric: and, according to Fige) and 7f), it
to be useful, the latter being quite sensitive to the deviation;g quite symmetric. On the other hand, tfie- —Y asymme-
In particular, simple.geometrical consider_atiqns, re_sulting intry of the Navier-Stokes equation appears due to the nonlin-
the ramp model6], link the asymmetry with intermittency, ear term, or nonlinear interaction, and the same nonlinear
as follows from expressiort45). The measurements pre- jnteraction is also responsible for the nonvanishing third mo-
sented in this paper confirm this inequality; see Fidp)2 ment of theX distribution: see Eq(19), i.e., the Kolmogorov

Still, this effect is subtle. Indeed, as seen from Table I, thgg,y, This breaking of the symmetry due to nonlinearity, act-

differences between plus and minus exponents are small, qhg both on theX and theY distribution, may be the reason
though they definitely are within the confidence level. Thewhy the joint PDF is asymmetric.

only exception is the Kolmogorov capacities for the plus and
minus distributions; see inset to Fig(al the difference is
appreciable. Of course, dealing with intermittency, we are
implying in fact rare events: that is, we are implying that The measurements of the atmospheric turbulence were
high fluctuations are happening much more often than whatade at Yale University, and were provided to me by K. R.
would follow from, say, a Gaussian distribution, but still Sreenivasan and B. Dhruva; | also appreciate discussions
rarely. Now, relating the intermittency with asymmetry with them. | thank A. Yaglom for his interest in this paper,
means that the latter is manifested mainly in the tails of theand for discussions.

VII. CONCLUSION

ACKNOWLEDGMENTS

[1] A. N. Kolmogorov, C. R. Acad. Sci. U.S.S.B2, 16 (194)).

[2] A. N. Kolmogorov, C. R. Acad. Sci. U.S.S.B0, 301(1941).

[3] K. R. Sreenivasan, Annu. Rev. Fluid Me@®8, 435(1997).

[4] S. I. Vainshtein, Phys. Rev. &6, 447 (1997.

[5] A. S. Monin and A. M. Yaglom Statistical Fluid Mechanigs
Vol. 2 (MIT Press, Cambridge, MA, 1971

[6] S. I. Vainshtein and K. R. Sreenivasan, Phys. Rev. L#3t.
3085(1994).

[7] K. R. Sreenivasan, S. I. Vainshtein, R. Bhiladvala, I. San Gil,
S. Chen, and N. Cao, Phys. Rev. Lét7, 1488(1996.

[8] According to the second Kolmogorov hypothesis, the PDF is
uniquely determined by the quantity [2], or, the PDF for
u/(r €)X should be universdl3]. The PDF in the form(16)
with o(r) defined by Eq(20) (which is a direct consequence
of the Kolmogorov law is indeed defined by the quantity

but not uniquely In other words, the self-similarity require-
ment for the PDK3), plus the Kolmogorov law result in ex-
pression(16) with arbitrary function @, that is, in slightly
relaxed form of the second hypothesis. Note that universal
function ® would imply not only the scaling21), (22) for all
moments, but also the universality afl coefficientss(m),
s(q), and C,, in these expressions. That would be quite a
strong restriction. In particular, it is known that the so-called
Kolmogorov constan€, appearing as a coefficient of Fourier
transform of the second order structure functi@iy and(22),

and therefore unambiguously related to the coefficsnt is
only approximately constant, see K. R. Sreenivasan, Phys. Flu-
ids 7, 2778(1995. Direct measurements of this function also
show that it is not universal, and in fact it is different for



6800 SAMUEL I. VAINSHTEIN 56

different distances, sdd], and Sec. V of this paper for more (1990; R. Benzi, L. Biferale, G. Paladin, A. Vulpiani, and M.

details. Vergassola, Phys. Rev. Le@i7, 2299(1991); P. Tabeling, G.
[9] F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, J. Zocchi, F. Belin, J. Maurer, and H. Willaime, Phys. Re\6E

Fluid Mech.140 63(1984; R. Benzi, L. Biferale, S. Ciliberto, 1613 (1996; A. Noullez, G. Wallace, W. Lempert, R. B.

R. Tripiccione, C. Baudet, F. Massaioli, and S. Succi, Phys. Miles, and U. Frisch, J. Fluid Mecl839, 287 (1997.

Rev. E48 R30(1993; G. Stolovitzky, K. R. Sreenivasan, and [12] C. Meneveau and K. R. Sreenivasan, J. Fluid M4, 429

A. Juneja,ibid. 48, R3217(1993; L. Zubair, Ph.D. thesis, (1991).

Yale University, 1993; C. Meneveau and K. R. Sreenivasan[13] A. N. Kolmogorov, J. Fluid Mech13, 82 (1962.

Nucl. Phys. B(Proc. Supp). 2'_ 49 (1987; R. R. Prasad, C. [14] S. I. Vainshtein, K. R. Sreenivasan, R. T. Pierrehumbert, V.

Mene\./eau, and K. R. Sreenlvasarl, Phys. Rev.. |6ett. 74 Kashyap, and A. Juneja, Phys. Rev56& 1823(1994.

s = e . oy, 151 . Heschean | procaci, Pysca s 1963:

J..Lu.tsko vand M.. Veréass:ola 1. FIuio] Mema 2167.(1992)" u. FI’ISCh. and G Parisi, |.ﬁ'urt_)u|ence and .Predlctabl.llty in

M. Borge{s, Philos. Trans. R.l Soc. London Ser.342, 37§ Geophygcal Fluid Dynamicsdited by M. Gil, R. Benzi, and

(1993. G. Parisi(North-Holland, Amsterdam, 1985pp. 84-88; G.
Paladin and A. Vulpiani, Phys. Ref56, 147 (1987).

[10] P. Kailasnath, K. R. Sreenivasan, and G. Stolovitzky, Phys. i
Rev. Lett.68, 2766(1992. [16] N. Cao, S. Chen, and K. R. Sreenivasan, Phys. Rev. L@&tt.

[11] B. Castaing, Y. Gagne, and E. J. Hopfinger, PhysictDL77 3799(1996.



